
        
            
                
            
        

    


SELECTED TOPICS

OF QUANTUM MECHANICS

Jacek Karwowski

Instytut Fizyki, Uniwersytet Mikołaja Kopernika, Toruń

April 15, 2010

BRIEF HISTORY

1

• Max Karl Ernst Ludwig Planck 1858-1947 – Black body radiation, 

quanta of energy 1900, the Nobel Prize 1918. 

• Albert Einstein 1879-1955 – Photoelectric effect ⇒ quantum structure of radiation 1905, Nobel Prize 1921

• Sir Ernest Rutherford 1871-1937 – Atomic nucleus 1911, Nobel Prize

1908 (for his investigations for the chemistry of radioactive substances)

• Niels Hendrik Bohr 1885-1962 – "Old quantum theory" 1913, Nobel Prize 1922 (for his investigations of the structure of atoms, and of the radiation emanating from them)

• Arnold Sommerfed 1868-1951 – The unification of the quantum theory

of Bohr with the special theory of relativity 1916. 

2

• Louis-Victor Pierre Raymond Prince de Broglie 1892-1987 – for his

discovery of the wave nature of electrons awarded the nobel Prize in

1929. 

• Werner Karl Heisenberg 1901-1976 – Quantum mechanics 1925, the

uncertainty principle, Nobel Prize (for the creation of quantum

mechanics) 1932

• Erwin Schrödinger 1887-1961 – Wave equation 1926, Nobel Prize (for

the discovery of new productive forms of atomic theory) 1933

• Wolfgang Pauli 1900-1958 – Quantum theory of many-particle

systems, the Pauli principle 1925, Nobel Prize (for the discovery of the Exclusion Principle, also called the Pauli Principle) 1945

• Paul Adrien Maurice Dirac 1902-1984 – The unification of quantum

mechanics and special theory of relativity 1928, Nobel Prize 1933

(shared with Schrödinger)

3

• Enrico Fermi 1901-1954 – Statistics of identical particles 1934, solid state physics, artificial radioactivity, Nobel Prize (for his demonstration of the existence of new radioactive elements produced by neutron

irradiation, and for his related discovery of nuclear reactions brought about by slow neutrons) 1938

• Richard Feynman 1918-1988, Julian Schwinger 1918-1994, Shinichiro

Tomonaga 1906-1979 – Quantum electrodynamics 1949, Nobel Prize

(for their fundamental work in quantum electrodynamics, with deep

ploughing consequences for the physics of elementary particles) 1965. 

• Tsung Dao Lee 1926, Chen Ning Yang 1922 – the violation of the

parity conservation law in weak interactions, Nobel Prize 1957 (for

their penetrating investigation of the so-called parity laws, which has led to important discoveries regarding the elementary particles). 

4

• Hans Albrech Bethe 1906 – Nucleosythesis, Nobel Prize 1967 (for his

discoveries concerning the energy production in stars)

• Murray Gell-Mann (Czerniowce) 1929 – The classification of

elementary particles, quark model, quantum chromodynamics, Nobel

Prize 1969

• Sheldon Lee Glashow (Bobrujsk) 1932, Abdus Salam 1926-1996, 

Steven Weinberg 1933 – unified theory of the electromagnetic and

weak interactions, Nobel Prize 1979

• John Henry Schwarz 1941, Michael Green 1946, Edward Witten 1951

– quantum theory of gravitation, string theory, grand unification (TOE) 5

• John Stewart Bell 1928-1990 - Bell inequalities; Alain Aspect 1947 –

the experimental proof of the completeness of quantum mechanics 1981

• Robert Floyd Curl 1933, Sir Harold Walter Kroto (Krotoschiner, 

Bojanowo) 1939, Richard Errett Smalley 1943-2005 - the discovery of

fullerenes, nanostructures, Nobel Prize 1996 (chemistry)

• Eric Allin Cornell 1961, Carl Edwin Wieman 1951, Wolfgang Ketterle

1957 - Bose-Einstein condensation (the phenomenon predicted by

Satyendra Nath Bose 1894-1974 and Albert Einstein in 1924), the

Nobel Prize 2001

• Quantum features of the Hall effect: Klaus von Klitzing 1943 –

quantum Hall effect Nobel Prize 1985; Robert Betts Laughlin 1950, 

Horst Ludwig Störmer 1949, Daniel Chee Tsui 1939 – fractional Hall

effect, Nobel Prize (for their discovery of a new form of quantum fluid with fractionally charged excitations) 1998. 
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THE POSTULATES
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POSTULATE I

A quantum system is associated with a linear vector space H. 

• The elements of H:  kets |i. (e. g. |A1i, |A2i). 

• The basis: orthonormal, in general infinite. 

May be discrete or continuous or both. 

An arbitrary vector in H may be represented as

Z

X

|Ai =

An|ni +

A(ξ)|ξidξ, 

n

C

• Vectors dual to the kets:  bras  h| (e.g hA1|, hA2|)

Z

X

hA| =

A∗nhn| +

A∗(ξ)hξ|dξ. 

n

C
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• The scalar product of A by B is the complex conjugate of the scalar

product of B by A: hA|Bi = hB|Ai∗. 

• The orthonormality of the basis:

hn|n0i = δmn0, 

hξ|ξ0i = δ(ξ − ξ0). 

• The completeness of the basis: the closure relation:

Z

ˆ

X

I =

|nihn| +

|ξidξhξ|, 

n

C

Note: |nihn| ≡ ˆPn

is a projector on the one dimensional space of vector |ni. 
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POSTULATE II

Each state of the quantum system is described by a normalized ket in H. 

A quantum state may be identified with a point on a unit sphere in H or, alternatively, with a direction in H

The linearity of H implies that a superposition of two different states is also a state of the quantum system, i.e., if |ψ1i and |ψ2i describe quantum states, then also

|ψi = c1|ψ1i + c2|ψ2i

is a state of this system. 

Conclusion:

equations which determine the evolution of a quantum system are linear. 

10



POSTULATE III

Each dynamical variable Ω is represented in H by a Hermitian operator ˆ

Ω. 

• The correspondence principle: The relationship between the operator

(observable) and the dynamical variable is the same as in the classical mechanics. 

Example: if x ⇒ ˆx, p

then

x ⇒ ˆ

px

ˆ

p2

T ⇒ ˆ

T =

, kx2 ⇒ kˆx2

2m

ˆ

r = (ˆ

x1, ˆ

x2, ˆ

x3), ˆ

p = (ˆ

p1, ˆ

p2, ˆ

p3)

L ⇒ ˆ

L = [ˆ

r × ˆp]
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• Each observable has a complete set of eigenvectors and real

eigenvalues. Its eigenvalue problem

ˆ

Ω|ωni = ωn|ωni, 

defines a complete basis |ωni. 

• If the eigenvectors of ˆ

Ω are taken as the basis in H we say that we have

the {Ω} representation. 

• A vector space H spanned by the basis of the representation {Ω} is

referred to as  the Ω  space, e.g. the  coordinate space, the  momentum space, etc. 
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• The closure relation gives the resolution of the identity

ˆ

X

I =

|ωnihωn|, 

n

Therefore for a vector

X

|Ai =

|ωni hωn|Ai

n

and for an observable

ˆ

X

Ξ =

|ωmihωn|ˆ

Ξ|ωmihωn|. 

mn

• Matrix element of the operator ˆ

Ξ:

Ξmn = hωn|ˆ

Ξ|ωmi

• Spectral decomposition of ˆ

Ω in its own representation:

ˆ

X

Ω =

|ωniωnhωn|. 

n

13

Conclusions:

• In a given representation {Ω}, a vector |Ai is represented by a set of numbers An = hωn|Ai labeled by one index, i.e. a column matrix

composed of the numbers A , 

n n = 1, 2, . . ., is the representative of |Ai. 

• An operator ˆ

Ξ is represented by a set of numbers Ξmn = hωm|ˆ

Ξ|ωni

labeled by two indices, i.e. a square matrix composed of elements

Ξ

, 

mn m, n = 1, 2, . . . is the representative of ˆ

Ξ. 

• A transition from one representation to another is equivalent to a

transition from one orthonormal basis to another orthonormal basis in

the same space; it is described by a unitary transformation performed

on all the representatives of vectors and operators. Such a

transformation changes the numerical values of the matrix elements, 

however it does not change the physical content of the theory. 
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“Measurement postulates” defining links between the formalism

and the physical reality modeled by this formalism. 

POSTULATE IV

Each result of a measurement of Ω is equal to one of the eigenvalues of ˆ

Ω. 

POSTULATE V

The probability P (ω ) that ω is the result of a measurement of Ω

n

n

performed on a quantum system in a state |Ai is equal to

P (ω ) = hA| ˆ

P |Ai = hA|ω ihω |Ai. 

n

n

n

n
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Conclusions:

• An observable {Ω} has a precisely defined value in its eigenstate only: P (ω

only if

n) = δkn

|Ai = |ωki. 

• Two different dynamical variables may have precisely defined values in a given state, only if this state is simultaneously an eigenstate of the corresponding observables. This is possible if these two operators

commute. 
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THE EQUATIONS OF MOTION
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THE SCHRÖDINGER PICTURE

|ψ, ti – a time-dependent state vector

The  evolution operator ˆ

T (t, t0):

|ψ, ti = ˆ

T (t, t0)|ψ, t0i

moves the state vector from t to

0

t. 

For an infinitesimal displacement in time:

î

T ≡ ˆ

T (t

ˆ

0 + δt, t0) = Î − Hδt, 

~

Thus, ˆ

H is the generator of the infinitesimal displacement in time. 

If ˆ

T is unitary then ˆ

H is Hermitian. 

By analogy to the classical mechanics it is identified with the Hamiltonian of the quantum system. 
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The Schrödinger equation

From the definition of ˆ

H:

|ψ, t0 + δti − |ψ, t0i

i

= − ˆ

H|ψ, t

δt

0i. 

~

If δt → 0 then

d|ψi

i~

= ˆ

H|ψi. 

dt

This is the Schrödinger equation in the representation-independent form. 
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The initial state |ψ, t0i is an arbitrary normalized vector in H

Therefore

d ˆ

T

i~

= ˆ

H ˆ

T . 

dt

If ˆ

H is time-independent then

ˆ

ˆ

T (t, t

H(t−t0)

0) = e− i~

. 

If we select the representation in which ˆ

H is diagonal, i.e. if

ˆ

H|Eni = En|Eni, 

then

ˆ

T |E

En(t−t0)

ni = e− i~

|Eni, 

20

Conclusions:

• If ˆ

H is time-independent, the quantum system would remain

permanently in its eigenstate. 

• Transitions between different eigenstates of the Hamiltonian are

possible as a consequence of time-dependent perturbations (e.g. due to an external electromagnetic field). 
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For an arbitrary state:

X

|ψ, t0i =

cn(0)|Eni. 

n

The time evolution:

X

|ψ, ti =

cn(t)|Eni = ˆ

T |ψ, t0i

n

with

c

En(t−t0)

n(t) = cn(0)e− i~

. 

This is a general solution of the Schrödinger equation in the case of a time-independent Hamiltonian. 

The state vector changes in time, but the distribution of the P (En)

probabilities remains constant since |cn(t)|2 = |cn(0)|2. 
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THE HEISENBERG PICTURE

One may obtain another, equivalent, mode of description of the evolution of a quantum system by performing a time dependent unitary transformation on the vectors and operators of the Schrödinger picture. 

Transformation ˆ

T † defines the  Heisenberg picture:

|ψHi = ˆ

T †|ψSi = ˆ

T −1|ψSi

ˆ

Ξ

ˆ

H = ˆ

T † ˆ

ΞST , 

One can see that |ψHi = |ψ, t0i is time-independent. 

Operators in the Schrödinger picture are time-independent. 

In the Heisenberg picture the operators are time-dependent. 
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The Heisenberg equation of the motion:

dˆ

Ξ

∂ ˆ

Ξ

i

H

H

~

= [ˆ

Ξ

. 

dt

H , ˆ

H] + i~ ∂t

Conclusion:

If the quantum system is isolated then an observable is time-independent (i.e. it describes a constant of the motion) if it commutes with the

Hamiltonian. 

24

COORDINATE AND MOMENTUM

REPRESENTATIONS

25

The coordinate operator

The basis vectors of the coordinate representation:

ˆr|ri = r|ri, 

The spectrum is continuous and extends from −∞ to +∞ in each

dimension. 

The orthonormality condition:

hr|r0i = δ(r − r0). 

The closure relation:

Z

Î =

|rid3rhr|. 

R3
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The representative of a state vector |ψ, ti depends upon the basis vector r, i.e. it is a function of r. It is called the wavefunction:

ψ(r, t) ≡ hr|ψ, ti. 

Similarly, 

ψ(r, t)∗ = hψ, t|ri. 

The normalization condition:

Z

Z

1 = hψ, t|ψ, ti =

hψ, t|rid3rhr|ψ, ti =

|ψ(r, t)|2d3r. 

R3

R3

27









The momentum operator

Electron diffraction experiments and the de Broglie hypothesis say that the coordinate representative of an eigenvector of the momentum operator is a plane wave:

1

i

hr|pi =

e r·p

~

, 

p(2π~)3

where

ˆ

p|pi = p|pi

By differentiating with respect to r one gets

~

− ∇

i

rhp|ri = php|ri. 

28

An observable which depends upon the coordinate operator only is diagonal in the coordinate representation:

hr|f(ˆr)|r0i = f(r0)δ(r − r0). 

Also:

Z

Z

hr|ˆp|r0i =

hr|ˆp|pihp|r0id3p =

phr|pihp|r0id3p

Z

= −i~∇r

hr|pihp|r0id3p = −i~∇rδ(r − r0), 

and similarly

hr|ˆp|ψ, ti = −i~∇rψ(r, t). 

In this way we have derived the well known formula for the momentum

operator in the coordinate representation:

ˆ

p = −i~ ∇r, 

29



The Schrödinger equation

By multiplying the representation-independent Schrödinger equation by hr|

from the left and inserting the resolution of identity between ˆ

H and |ψ, ti, 

we get

∂ψ(r, t)

Z

i~

=

H(r, r0)ψ(r0, t)dr0, 

∂t

where

H(r, r0) = hr| ˆ

H|r0i. 

30









If

ˆ

ˆ

p2

H =

+ V (ˆr), 

2m

then



~2



hr| ˆ

H|r0i = −

4

δ(r − r0). 

2m

r0 + V (r0)

In consequence

∂ψ(r, t)



~2



i~

= −

4

ψ(r, t). 

∂t

2m

r + V (r)
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The momentum representation:

The basis in H is formed by the eigenvectors of the momentum operator. 

The state vector in the momentum representation:

χ(p, t) ≡ hp|ψ, ti. 

The coordinate and the momentum representatives of the state vector are related by a Fourier transformation:

Z

1

Z

i

ψ(r, t) = hr|ψ, ti =

hr|piχ(p, t)d3p =

e r·p

~

χ(p, t)d3p. 

p

R

(2π~)3

3

R3

Similarly:

hp|f(ˆp)|p0i = f(p)δ(p − p0)

and

hp|ˆr|p0i = −i~∇pδ(p − p0). 
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The Schrödinger equation in momentum representation

∂χ(p, t)

Z

i~

=

H(p, p0)χ(p0, t)d3p0, 

∂t

R3

where

H(p, p0) = hp| ˆ

H|p0i. 

33











If

ˆ

ˆ

p2

H =

+ V (ˆr), 

2m

then

∂χ(p, t)

p2

Z

i~

=

χ(p, t) +

V (p, p0)χ(p0, t)dp0, 

∂t

2m

where

V (p, p0) = hp|V (ˆr)|p0i

Z

=

hp|rihr|V (ˆr)|r0ihr0|p0id3r d3r0

1

Z

i

=

V (r)e (p−p0)r

~

d3r. 

(2π~)3

34





Note:

In the case of the harmonic oscillator with

ˆ

ˆ

p2

mω2

H =

+

ˆr2

2m

2

the Schrödinger equation in the coordinate and in the momentum

representation has the same mathematical structure. 

In most of other cases, the Schrödinger equation in the momentum

representation is an integral equation in which the potential function is the kernel of the integral. 
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THE SCHRÖDINGER

AND

THE DIRAC EQUATIONS
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Invariance properties

Given an equation

ˆ

ΩΨ = 0

and a transformation S. The transformed equation reads

ˆ

Ω0Ψ0 = 0

where

ˆ

Ω0 = S ˆ

ΩS−1

and

Ψ0 = SΨ. 

37

The results given by a model described by this equation are independent of the transformation if ˆΩ is invariant with respect to S:

S ˆ

ΩS−1 = ˆ

Ω

i.e. if

h

i

S, ˆ

Ω = 0. 

In such a case S is called  a symmetry transformation. 

The transformation S is a symmetry transformation if one cannot design an experiment which would allow to detect whether this transformation has been performed or not. 

For example, a translation in three-dimensional space of a free particle or a rotation of a free atom belong the symmetry operations of these systems. 

38

The most universal symmetry is related to transformations between two

inertial (i.e. moving with a constant velocity relative to each other) reference frames. 

Newton:  “The motions of bodies included in a given space are the same among themselves, whether that space is at rest or moves uniformly forward in a straight line” . 

Poincaré (principle of relativity):  “The laws of physical phenomena must be the same for a fixed observer as for an observer who has a uniform motion of translation relative to him, so that we have not, nor can we possibly have, any means of discerning whether or not we are carried along in such a motion” . 
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Conclusion:

All physical theories, including quantum mechanics, should be formulated in such a way that the results of all measurements are the same independent of whether they are taken by an observer in rest or by an observer moving in uniform translation. 

This implies that the equation of the motion must be invariant with respect to a transformation from one inertial frame to another. In the non-relativistic case this implies the invariance of the Hamiltonian. 
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Transformations of the reference frames:

Newtonian mechanics is invariant with respect to the Galilean

transformations:

x01 = x1 − ut, 

x02 = x2, x03 = x3, 

t0

= t, 

The axes of both frames are parallel, 

The unprimed quantities: the frame is "in rest" 

The primed quantities:

the frame is moving with a constant velocity u along the x axis. 

1

41

Michelson and Morley experiment (1887):

The velocity of light measured from different

inertial reference frames is always the same. 

Inconsistent with the Galilean transformation. 
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Einstein (1905): The transformation between two inertial frames which

leads to the conclusion that the velocity of light is a universal constant is the Lorentz transformation

x

t − ux

x0

1 − ut

1/c2

1 =

, x0

p

2 = x2, 

x03 = x3, t0 =

1 − u2/c2

p1 − u2/c2

with respect to which the Maxwell equations are invariant. Mechanics has to be formulated in such a way that it is also invariant with respect to this transformation. 

Result: the special theory of relativity. 

The  causality principle: In a Lorentz-invariant theory no signal can travel with a velocity larger than that of light. 

43

A requirement of invariance with respect to either Galilean or Lorentzian transformation imposes very strong restrictions on the structure of a theory and on the form of the basic equations. 

A model which is Galileo-invariant is called NON-RELATIVISTIC. 

In a non-relativistic model three coordinates of a point, momentum, 

velocity, are three-component vectors, while time or energy are invariants (scalars). Therefore the equation of motion (the Schrödinger equation) is invariant with respect to the Galilean transformation if the Hamiltonian is Galileo-invariant. 
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The non-relativistic (Galileo-invariant) Hamilton function of a free particle: p2

H0 =

. 

2m

If the particle moves in an external field characterized by

• Scalar potential V and

• Vector potential A, 

the non-relativistic Hamilton function is

1 

e 2

H =

p − A

+ V. 

2m

c

The correspondence principle applied to the nonrelativistic Hamilton

function leads to the nonrelativistic Hamiltonian operator and opens a way to formulation of the nonrelativistic (Schrödinger) quantum mechanics. 

45

Models which are Lorentz-invariant, are called RELATIVISTIC

In a relativistic model three coordinates: x , , 

and time, 

1 x2 x3

x4 = ict, 

form a four-component vector. 

Also momentum and energy, current and density, are components of the

same four-vector. 

Conclusion: In a Lorentz-invariant model, the space coordinates of a particle and the time corresponding to this particle should appear on an equal footing, contrary to a non-relativistic model, where time is an absolute quantity, the same for all particles. 

In particular, if an equation is of the first-order in time, it must be of the first-order in all coordinates. 
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In the general equation of motion

d|ψi

i~

= ˆ

H|ψi. 

dt

time plays a special role. 

We say that this equation is written in a non-covariant form, i.e. its possible Lorentz-invariance is hidden and may be discovered only after analyzing simultaneously the form of the Hamiltonian and the structure of the

equation. 

A Lorentz-invariant quantum mechanical equation (the Dirac equation)

results from the general equation of motion if the Hamilton operator is derived, through the correspondence principle, from the relativistic

Hamilton function. 
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The relativistic Hamilton function of a free particle:

r



p 2

H0 ≡ Ep = mc2 1 +

. 

mc

Its resolution into a power series of p 2:

mc

p2

p4

H0 = mc2 +

−

+ mc2 O (p/mc)6 , 

2m

8m3c2

The Hamilton function of a particle in an external field:

r

1



e 2

H = mc2

1 +

p − A

+ V. 

m2c2

c

48



Note:

No Lorentz-invariant equation describing more than one particle can be written in the form

d|ψi

i~

= ˆ

H|ψi. 

dt

In the case of N particles such an equation would have to depend on N

independent time coordinates. 
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The relativistic quantum mechanics

The first Lorentz-invariant equation describing the evolution of a quantum state was obtained by Schrödinger, Klein and Gordon. 

They took a square of the operators on both sides of

∂ψ(r, t)

i~

= ˆ

Hψ(r, t). 

∂t

For the free-particle relativistic Hamiltonian they got:

−~2 ∂2ψ(r, t) = (m2c4 + c2 ˆ

p2)ψ(r, t). 

∂ t2

50







Putting

ˆ

p2ψ = −~24ψ

we get

(2 − κ2)ψ = 0, 

where

1 ∂2

2 = 4 − c2 ∂t2

and

mc

κ =

. 

~

This equation is known as the Klein-Gordon equation. It

• Is relativistically invariant, 

• May be generalized to account for an external field, 

• Does not describe electrons, 

• Describes spinless particles. 
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In order to derive a relativistic equation describing an electron, let us consider the non-relativistic free-particle Hamiltonian

ˆ

ˆ

p2

Ha0 =

. 

2m

For a spin-1 particle one may take

2

ˆ

(σ · ˆp)2

Hb

0 =

, 

2m

instead, where σ are the Pauli spin matrices. 
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Due to the identity

(σâ)(σ ˆ

b) = (â · ˆb) + iσ · [â × ˆb], 

both equations are consistent with the correspondence principle. 

However, in equation

∂Ψ

Ha0Ψ = i~ ∂t

Ψ is a scalar function while in equation

∂Ψ

Hb

0 Ψ = i~ ∂t

Ψ is a two-component function. 
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If the particle moves in an external field the difference between these two equations becomes even larger. 

After the substitution

e

ˆ

p → ˆp − Â

c

one gets

ˆ

1 

e 2

Ha =

ˆ

p − Â

2m

c

and

ˆ

1 

e 2

e~ 



Hb =

ˆ

p − Â

−

σ · ˆ

B , 

2m

c

2mc

where ˆB = ∇ × Â is the magnetic field operator. 

The σ-dependent term was introduced to the Schrödinger equation by Pauli on a purely phenomenological basis in order to account for the interaction of the electron spin magnetic moment with the external magnetic field. 
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Spin-1 particle. 

2

The correspondence principle applied in the same way as in ˆ

H to

b

E2p − c2p2 = m2c4

gives the following quantum equation:

[ Ê − c (σ · ˆp)][ Ê + c (σ · ˆp)]Ψ = m2c4Ψ, 

where Ψ is a two-component function. 

One may rewrite this equation in the form

ˆ

Ω ˆ

−Ω+Ψ = m2c4Ψ, 

where

ˆ

Ω± = Ê ± c (σ · ˆp). 
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Dirac equation in the representation of Weyl

Defining

1

Ψr

≡

ˆ

Ω

mc2 +Ψ

Ψl

≡ Ψ

we get

ˆ

Ω+Ψl = mc2Ψr, 

ˆ

Ω−Ψr = mc2Ψl, 

i.e. 



 



Ê − c (σ · ˆp), 

−mc2

Ψl



 

 = 0. 

−mc2, 

Ê + c (σ · ˆp)

Ψr
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Taking

ˆ

∂

E = i~ ∂t

This pair of equations may be rewritten as

∂Ψ

i

w

~

= ˆ

H

∂t

wΨw

where





Ψr

Ψw = 



Ψl

is a four-component wavefunction and





c (σ

ˆ

· ˆp), 

mc2

Hw = 



mc2, 

−c (σ · ˆp)

We derived Dirac equation in the representation of Weyl. 
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Representations in the spinor space

Let A be non-singular 4 × 4 matrix. Then the equation

∂Ψ

i~

= ˆ

HΨ

∂t

where

ˆ

H = A ˆ

Hw A−1

and

Ψ = A Ψw. 

is equivalent to the original equation. 

The standard (Dirac-Pauli) representation is obtained if





1

I, 

I

A = √ 

 = A−1. 

2

I, −I
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Dirac-Pauli representation

In this representation

∂Ψ

i

D

~

= ˆ

H

∂t

DΨD

where





ΨL

ΨD = 



ΨS

is the Dirac wavefunction [ΨL / ΨS are its large / small components] and





mc2, 

c (σ

ˆ

· ˆp)

HD = 

 = c α · p + β mc2

c (σ · ˆp), 

−mc2

with









0, 

σ

I, 

0

α = 

 , 

β = 



σ, 

0

0, 

−I
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External fields

In the presence of an external electromagnetic field the free-particle Dirac Hamiltonian has to be replaced by

ˆ



e 

H

ˆ

D = c α ·

ˆ

p − A + β mc2 + ˆ

V . 

c
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It is important to note that equations:

∂Ψ(r, t)

ˆ

p2

i~

=

Ψ(r, t)

∂t

2m

and

∂Ψ(r, t)

i~

= c α · ˆp + β mc2 Ψ(r, t)

∂t

are defined in different Hilbert spaces. 

The Hilbert space of the first equation is H. In this case it is spanned by the set of eigenvectors of the coordinate operator. The second equation is represented in a space H which is a tensor product of

D

H and a

4-dimensional spin-space H in which operators

Σ

α and β are represented

as 4 × 4 matrices:

HD = H ⊗ HΣ. 
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Non-relativistic limit

The non-relativistic Schrödinger equation may also be written as a

first-order, four-component equation. 

For a stationary state, after shifting the energy scale by mc2, i.e. 

E − mc2 → E, the Dirac equation may be rewritten as



 



−E, 

c(σ · ˆp)

ΨL



 

 = 0. 

c (σ · ˆp), −E − 2mc2

ΨS

From here



 



−E, 

(σ · ˆp)

ΨL



 

 = 0. 

(σ · ˆp), −2m − Ec−2

cΨS
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Lévy-Leblond equation

In the non-relativistic approximation Ec−2 = 0 and



 



−E, 

(σ · ˆp)

ΨL



 

 = 0. 

(σ · ˆp), 

−2m

cΨS

This is Lévy-Leblond equation. It is defined in the same space as the Dirac equation. 

The elimination of cΨS gives

(σ · p)2 ΨL = EΨL

2m
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SIMPLE SOLUTIONS
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A free particle

Both Schrödinger and Dirac Hamiltonians commute with the momentum

operator. Then, in both cases the eigenstates of the Hamiltonian may be chosen to be eigenfunctions of the momentum and represented by the plane waves. The eigenfunction of the free-particle Dirac equation, corresponding to the momentum p, may be expressed as





ψ1





i (r·p)



ψ2  e ~

ψ(r) = 



, 



 √

3



ψ3 

2π~





ψ4

where r-independent ψ , 

k k = 1, 2, 3, 4 form a four-component  spinor. 
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The components of the spinor may be obtained from the Dirac equation:

(mc2 − E)ψL + c (σ · p)ψS = 0, 

c (σ · p)ψL − (mc2 + E)ψS = 0, 

where p are eigenvalues of ˆp and









ψ1

ψ3

ψL = 

 , 

ψS = 



ψ2

ψ4

If |E − mc2| = |ε| << mc2 (non-relativistic approximation) then

(σ · p)



|ψS| ≈ 





ψL << |ψL|. 



2mc



Therefore ψL and ψS are, respectively, referred to as the  large  and the  small components of the Dirac wavefunction. 
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The free-particle Schrödinger Hamiltonian commutes with the orbital

angular momentum operator ˆL = ˆr × ˆp, but the Dirac one does not. 

For a free particle, ˆL is a constant of the motion for the Schrödinger electron but not for the Dirac one. 

The free-particle Dirac Hamiltonian commutes with

~

ˆ

J = ˆ

L + Σ, 

2

where





σ

0

Σ = 



0

σ

It is defined as the total angular momentum operator of the electron, 

composed of the orbital part ˆJ and the spin part ~ Σ. 

2
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The eigenvalues of the Dirac Hamiltonian are:

r



p 2

E = ±mc2 1 +

. 

mc

Then, the spectrum of the Dirac Hamiltonian is not limited from below. 
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One should expect that an electron in a positive energy state should fall into a negative energy state and emit a photon with an energy which may be

infinite, since the spectrum is unlimited. In order to solve this difficulty Dirac proposed that all the negative-energy states are filled under normal conditions and the Pauli exclusion principle prevents transitions to these states. An excitation of one negative-energy electron results in creation of a hole in the "Dirac vacuum" and of one positive-energy electron and corresponds to the creation of an electron-positron pair. This interpretation contains a self-contradiction: the Dirac model describes a single electron. 

At the same time, it is unable even to explain the behaviour of a free particle without assuming that it is surrounded by an infinite number of particles occupying the negative-energy states. 
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Dirac velocity

In the Schrödinger case:

 dˆr 

i

ˆ

p

=

[ ˆ

H

. 

dt

S, ˆ

r] =

~

m

S

In the Dirac case:

 dˆr 

i

=

[ ˆ

H

dt

D, ˆ

r] = c α. 

~

D

This result is very strange in many aspects. First, the eigenvalues of α are k

±1. Therefore the eigenvalues of dˆr are equal to

dt

±c. 

D
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Besides, different components of dˆr do not commute. Then, a

dt D

measurement of one component of the Dirac velocity is incompatible with a measurement of another one. This is also strange since different

components of the momentum operator do commute. Moreover, dˆr

dt D

does not commute with ˆ

H and therefore the velocity is not a constant of

D

the motion despite the fact that the particle is free. 
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An explanation of this fact involves an analysis of the time-dependence of α and of the coordinate operator ˆr. It results that both of them execute very rapid oscillations with an angular frequency (2mc2)/~ = 1.5 · 1021sec−1. 

This motion, named by Schrödinger  Zitterbewegung, is due to an interference between the positive- and negative-energy components of the wavepacket describing the electron. Intuitively it may be interpreted as a consequence of a permanent creation and annihilation of the so called

 virtual  electron-positron pairs. 
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In order to explore this problem in more detail it is convenient to introduce the  even  and  odd  operators. An even operator acting on a function which belongs to the positive (negative) energy subspace of a free electron

transforms it into a function which belongs to the same subspace. An odd operator transforms a positive (negative)-energy-subspace function into a function which belongs to the complementary subspace. 

Operators

ˆ

1

Π± = ( Î ± ˆ

Λ), 

2

where

ˆ

ˆ

H

c (α · ˆp) + β mc2

Λ =

D =

E

p

p

m2c4 + c2p2

is the operator of the sign of energy (its eigenvalues are +1 for the positive-and −1 for the negative-energy states), are projection operators to the positive (ˆΠ+) and to the negative (ˆΠ−) energy subspace. 
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For example, the operator ˆΠ âcts in the free-electron positive-energy

+Ω ˆ

Π+

space only. In the free particle space each operator, say ˆΩ, may be

decomposed into its even part [ˆΩ] and its odd part {ˆΩ}:

ˆ

Ω = [ ˆ

Ω] + {ˆ

Ω}, 

where

1

[ ˆ

Ω] =

( ˆ

Ω + ˆ

Λ ˆ

Ωˆ

Λ), 

2

1

{ˆ

Ω} =

( ˆ

Ω − ˆ

Λ ˆ

Ωˆ

Λ). 

2

After some algebra one can see that

 dˆr  

c2p

= c [α] =

ˆ

Λ, 

dt

E

D

p

i.e. the result corresponding to the standard definition of velocity. 
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One-electron atom

An exact quantum-mechanical treatment of a hydrogen-like atom is

equivalent to solving a two-body problem with a Coulomb interaction. In the nonrelativistic case it may be solved exactly. By the separation of the center of mass the six-dimensional Schrödinger equation is split into two three-dimensional equations. One of them describes a free motion of the center of mass and the other one – the relative motion of the electron and the nucleus. 

The Hamiltonian which governs the relative motion:

ˆ

ˆ

p2

Ze2

HS =

−

, 

2µ

r

where Ze is the nuclear charge, 

mM

µ = m + M

is the reduced mass; m – mass of electron and M – mass of the nucleus. 
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The Hamiltonian and the orbital angular momentum operators ˆL2 and ˆLz form a set of mutually commuting operators. 

The eigenvalue spectrum of ˆ

H consists of the discrete part (describing the

S

bound states) and the continuous part (describing the ionized states). The discrete part of the eigenvalue problem may be written as

ˆ

HSψnlm(r, θ, φ) = ESnψnlm(r, θ, φ)

where r, θ and φ are the spherical coordinate system variables and

n = 1, 2, . . . , 

l = 0, 1, . . . , n − 1, 

m = −l, −l + 1, . . . , l

are the quantum numbers describing, respectively, the energy (the principal quantum number), the orbital angular momentum and its projection. 
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The eigenvalues (the energies of the bound states) in the Hartree atomic units (a.u.: m = 1, e = 1, ~ = 1) are given by

Z2 µ

 Z 2

ES

a.u. 

n = −

= −

R

2n2 m

n

M , 

where

µ

RM =

R

m

∞

and

mc2

R∞ =

α2

2

are the Rydberg constants for the finite and infinite nuclear mass, 

respectively, and

e2

1

α =

≈

~c

137

is the fine structure constant. 
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The eigenfunctions are labeled by three quantum numbers and the degree of degeneracy is equal to n2. There are two origins for this degeneracy. One, with respect to the quantum number m, is a consequence of the spherical symmetry of the problem (in all spherically symmetric one-electron systems this kind of degeneracy would appear). The second one, with respect to the quantum number l, is a consequence of a  dynamical symmetry  connected with some specific properties of the interaction potential. In the case of the non-relativistic one-electron atom there is an additional constant of the motion arising from the commutation of the so called  Runge-Lenz  vector with the Hamiltonian. The l-degeneracy is related to the existence of this constant of the motion and is removed if the potential is deformed so that it loses its Coulomb character. 
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The eigenfunctions of the hydrogen-like Hamiltonian are prototypes for most of approximate one-electron functions (orbitals) used in quantum

chemical calculations. They may be expressed as

1

ψnlm(r, θ, φ) = R

r nl(r)Ylm(θ, φ), 

where Y (the spherical harmonics) are the eigenfunctions of ˆ

lm

L2 and ˆ

Lz

and R are the radial functions. 

nl

The radial functions are of the form

Rnl(r) = W ln(r)e−Zr/n, 

where W l is a polynomial of the degree

n

n with l-dependent coefficients. 

The number of nodes of this polynomial is equal to n − l. 

At the origin the radial part of the wavefunction r−1R behaves as

nl

rl, i.e. 

it vanishes for r = 0 if l 6= 0. 
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The spherical harmonics are, for m 6= 0, complex and:

Yl,−m = (−1)mY ∗

lm. 

Their real combinations; 

Y

and

lm + (−1)mYl,−m

i [Ylm − (−1)mYl,−m]

may be expressed as

1 X C

rl

abcxaybzc, 

abc

where a + b + c = l. 

For l = 0, 1, 2, 3, . . . they are referred to as s,p,d,f,. . .-type functions, respectively. 

The consecutive discrete states of the hydrogen-like atom are labeled by the quantum numbers n and l as 1s, 2s, 2p, 3s, 3p, 3d, . . .. 
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The standard Schrödinger model of a hydrogen-like atom does not contain spin. Spin may be introduced by using the phenomenological Pauli model. 

Then the wavefunction ψ

has to be multiplied by a two-component spin

nlm

function α or β corresponding, respectively, to the eigenvalues + ~ and 2

− ~2

of a projection ˆ

S of the spin operator. These functions are referred to as

z

 spinorbitals. The spinorbitals may be combined according to the rules of coupling the angular momenta to form eigenfunctions of the total angular momentum operator which, of course, also commutes with the Hamiltonian. 

However introducing spin at this level does not influence the energy of the atom, unless the atom is placed into an external magnetic field when the Pauli term influences the energy (do not confuse with the Pauli relativistic corrections which result from a reduction of the Dirac equation). 
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In the relativistic case a two-body Coulomb problem cannot be solved

exactly. Therefore the hydrogen-like atom in the Dirac theory is modeled by an electron moving in an external Coulomb field. We solve the

corresponding Dirac equation in the reference frame in which the

singularity of the potential is placed at the origin, i.e. with

Ze2

V (r) = − r
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Neither the square nor the projection of ˆL commutes with the Dirac

Hamiltonian. Therefore the Dirac wavefunction can be an eigenfunction of neither ˆL2 nor ˆL . However, in the standard representation, the large and z

small components are eigenfunctions of ˆL2, to the eigenvalues l(l + 1) and l0(l0 + 1) respectively, where l0 = l ± 1. We introduce, apart of the total angular momentum quantum number j = l ± 1/2 and its projection

mj = −j, −j + 1, . . . , j, the relativistic angular momentum quantum

number





l

if j = l − 1/2

κ = ±(j + 1/2) =



−(l + 1) if j = l + 1/2. 

The energy spectrum consists of two continua (one extending from +mc2

up and another one extending from −mc2 down) and the discrete spectrum located below the ionization threshold +mc2 and depending on two

quantum numbers: n and j (or, equivalently, on n and κ). 
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The eigenvalue equation:

ˆ

HDψnljm = ED

, 

j

nj ψnljmj

where

Z2

ED

nj − mc2 = −

·2R

N (N + ˜

n)

∞

with

p

N =

α2Z2 + ˜

n2, 

˜

n = n + s − |κ|, 

and

p

s =

κ2 − α2Z2. 

The Dirac states are labeled by n, l and j (l corresponds to the ˆL2

eigenvalue for the large component of the pertinent wavefunction). 
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The consecutive discrete states of the Dirac atom are:

1s

, 

, 

, 

, 

, 

, 

, 

, 

, 

1/2 2s1/2 2p1/2 2p3/2 3s1/2 3p1/2 3p3/2 3d3/2 3d5/2 . . .. 

For α → 0, i.e. in the nonrelativistic limit, 

s → κ, 

˜

n → n, 

N → n, 

(ED

nj − mc2) → ES

n. 

By expanding the Dirac energy into a power series of (αZ)2 one gets



(αZ)2

(αZ)4  1

3 



ED

nj = mc2

1 −

−

−

+ O (αZ)6 , 

2n2

2n3

|κ|

4n

where the first term is the rest energy of the electron, the second one is the non-relativistic (Schrödinger) energy and the third one is the relativistic (Pauli) correction. 

85

In the Dirac spectrum, apart of shifting the energy levels relative to the Schrödinger ones, some of the degeneracies have been removed. Now the

energy levels depend upon the total angular momentum quantum number j

but, also in the Dirac theory, they do not depend upon l. Then, the energy of the states 2p

and

are different while the energies of

is the

1/2

2p3/2

2p1/2

same as that of 2s . The splitting of the energy levels due to

1/2

j is called the

 fine structure splitting. It is relatively small for small Z but it grows very fast with increasing nuclear charge (it is proportional to Z4). 
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Experimental measurements show that the energies of a real hydrogen-like atom depend upon l. In particular the energies of 2s

and

are

1/2

2p1/2

different. For the first time this splitting was measured for the hydrogen atom by Lamb and Retherford. The effect is called the  Lamb shift. It may be explained on the ground of quantum electrodynamics. Its value grows rapidly with increasing Z. For the hydrogen atom it is equal 1060 Mc =

4·10−6 eV; for the uranium like atoms it is about 70 eV, i.e. by 7 orders of magnitude larger than in hydrogen! 
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The eigenfunctions of a spherically-symmetric Dirac Hamiltonian may be represented as





1

Gnκ(r) Φ(θ, φ)nlκm

ψ

j

nlκm =

j

r 



i Fnκ(r) Φ(θ, φ)nl0−κm , 

j

where l0 = l − κ/|κ| and Φ(θ, φ) are combinations of products of the

spherical harmonics and the two-component spin functions constructed

according to the rules of coupling the angular momenta. 

The radial functions fulfill the following eigenvalue equation:

 d

κ 

mc2 − E + V (r) G(r) − c

−

F (r) = 0, 

dr

r

 d

κ 

c

+

G(r) − mc2 + E − V (r) F (r) = 0, 

dr

r

where, in the case of a hydrogen-like atom, V (r) = −Ze2/r. 
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Then, the small component is related to the large one:

 d

κ 

F (r) = c mc2 + E − V (r)−1

+

G(r). 

dr

r

Both large and small radial components may be expressed as products of e−ζr and a polynomial, where ζ = pm2c2 − E2/c2. At the origin R(r)

behaves as rs. Then, for |κ| > 1 it vanishes for r = 0. However, for κ = ±1, s < 1 and r−1R(r) is singular. This singularity is weak and for Zα < 1 does not obstruct the normalizability of the wavefunctions. The relativistic radial electron density is contracted relative to the

non-relativistic one (the Dirac hydrogen atom is "smaller" than the Schrödinger one) . Besides, it is nodeless since the nodes of the large and small radial components (except the r = 0 node) never coincide. 
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Singularity of the Dirac wavefunctions at the origin is a consequence of the Coulomb singularity in the potential. A more general potential may be

taken in the form

e2

V (r) = −Z(r)

. 

r

If Z(r) is constant, then we have a point nucleus and singular potential. 

One of the simplest and most common is a model in which a uniform

nuclear charge distribution is assumed. In this case









− 3Z 1 − r2

e2, if 0 ≤ r ≤ A

V (r) =

2A

3A2



− Ze2

if r > A. 

r

Taking the finite nuclear model we get the wavefunction without any

singularity: r−1G(r) behaves as rl and r−1F (r) – as rl+1. 
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RELATIVISTIC COVARIANCE OF

THE DIRAC EQUATION
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Notations and basic properties

xµ = (r, ict)

∂



~ ∂ 

pµ = −i~

=

p, −

∂ xµ

c ∂ t

γµ = (−iβα, β) = (γ, β)









0

−iσ

I

0

γ = 

 , 

γ4 = 



iσ

0

0

−I

γµ = γ†µ

γµγν + γνγµ = 2δµν
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Dirac equation

∂Ψ

i~

= c α · p + β mc2 Ψ

∂ t





ψ1







ψ2 

Ψ = 

 , 

Ψ† = [ψ∗





1 , ψ∗

2 , ψ∗

3 , ψ∗

4 ]



ψ3 





ψ4

Ψ = Ψ†β = [ψ∗1, ψ∗2, −ψ∗3, −ψ∗4] = Ψ†γ4

∂Ψ

∂Ψ

mc

γµ

+ κΨ = 0, 

γ

∂ x

µ − κΨ = 0, 

κ =

µ

∂ xµ

~
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Continuity equation:

∂ jµ = 0

∂ xµ

jµ = iceΨγµΨ = (j, icρ) , ⇒ j = ceΨ†αΨ, ρ = eΨ†Ψ

Pauli fundamental theorem

Given two sets of 4 × 4 matrices satisfying

{γ

and

µ, γν } = 2δµν

{γ0µ, γ0ν} = 2δµν

with µ, ν = 1, 2, 3, 4, there exists a nonsingular 4 × 4 matrix S such that SγµS−1 = γ0µ. 

Moreover, S is unique up to a multiplicative constant. 

Most commonly used representations: Dirac-Pauli (standard), Weyl, 

Majorana (γ are purely real, 

is purely imaginary)

k

γ4
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Lorentz transformation – a rotation in the Minkowski space

x0µ = aµνxν

aµνaλν = δµλ, 

det |aµν| = 1, 

a44 > 0. 

Special cases

• Rotation in the usual three-dimensional space







 



x01

cos ω

sin ω

x1



 = 

 



x02

− sin ω cos ω

x2

• “Pure” Lorentz transformation – rotation in 1 − 4 plane by angle iχ







 



x01

cosh χ

i sinh χ

x1

v



 = 

 

 , 

tanh χ =

x0

c

2

− sinh χ

cosh χ

x2
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Covariance of the Dirac equation

A0µ(x0) = aµνAν(x), 

∂

∂

= a

∂ x0

µν

µ

∂ xν

∂Ψ(x)

∂Ψ0(x0)

γµ

+ κΨ(x) = 0 ⇒ γ

+ κΨ0(x0) = 0

∂ x

µ

µ

∂ x0µ

Assumption:

Ψ0(x0) = SΨ(x), 

S – 4 × 4 matrix independent of xµ

S−1γµSaµν = γν

⇒

S−1γλS = aλνγν
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The non-relativistic Pauli model

Rzω|lmi = eimω|lmi, 

m = −l, −l + 1, . . . , l







 



U+

eiω/2

0

U+

Rz  1



1



ω 

= e±iω/2 

2 ± 1

2

2 ± 12

⇒ Rzω 

 = 

 



U−

0

e−iω/2

U−

SPauli U (x) = U 0(x0)





cos ω + i sin ω

0

S

2

2

Pauli

= 



0

cos ω2 − i sin ω2

= I cos ω + iσ

2

3 sin ω

2
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Several formulas

σ × σ = 2iσ

σjσk − σkσj = 2iσl

σjσk + σkσj = 0

σjσk = iσl, 

(cyclic)





σ3

0

Σ3 = 



0

σ3



 







0

−iσ1

0

−iσ2

σ3

0

γ1γ2 = 

 

 = i 

 = iΣ3, 

iσ1

0

iσ2

0

0

σ3

(γ1γ2)2 = −I4
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The Dirac model - rotation in 1 − 2 plane

Srot = I4 cos ω + iΣ

= I

+ γ

2

3 sin ω

2

4 cos ω

2

1γ2 sin ω

2

S−1

rot = I4 cos ω

= I

2 − iΣ3 sin ω

2

4 cos ω

2 − γ1γ2 sin ω

2

Theorem:

S−1

rot γλ Srot = aλµγν





cos ω

sin ω

0

0







− sin ω cos ω 0 0 

a = 









0

0

1

0 





0

0

0

1

where a – matrix with elements a , 

λµ λ, µ = 1, 2, 3, 4. 
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The Dirac model - rotation in 1 − 4 plane

ω → iχ, 

cos ω → cosh χ, 

sin ω → i sinh χ, 

γ2 → γ4. 

SLor = I4 cosh χ + iγ

2

1γ4 sinh χ

2

S−1 = I

Lor

4 cosh χ

2 − iγ1γ4 sinh χ

2

Theorem:

S−1 γ

Lor λ SLor = aλµγν





cosh χ

0 0 i sinh χ







0

1 0

0



a = 









0

0 1

0







−i sinh χ 0 0

cosh χ
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More definitions and formulas

1

σµν ≡

[γ

2i

µ, γν ] . 

σµν = −i γµγν, µ 6= ν





σk

0

σij = −σji = Σk = 



0

σk





0

σk

σk4 = −σ4k = αk = 



σk

0

[γ4, σij] = 0, 

{γ4, σk4} = 0





0

−I

γ5 ≡ γ1γ2γ3γ4 = 



−I

0

{γµ, γ5} = 0, γ25 = I4 [γ5, σµν] = 0
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Summary

Sij

rot = I4 cos ω + iσ

2

ij sin ω

2

Sk4

Lor = I4 cosh χ

2 − σk4 sinh χ

2

S†rot = S−1

rot

S†

= S

Lor

Lor6=S−1

Lor

Conclusion:

SLor

is not unitary! . 

But

S−1 = γ

and

4 S†γ4

S† = γ4 S−1γ4

It is consistent with

Ψ = Ψ†γ . 

4

Also

S−1γ5 S = γ5
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Space inversion

r0 = −r, 

t0 = t





−1

0

0

0







0

−1

0

0 

a = 









0

0

−1 0 





0

0

0

1





S−1 γk Sinv = −γk

S−1 γ

inv

inv

λ Sinv = aλν γν

⇒

⇒ Sinv = γ4 = S−1

inv



S−1 γ

inv

4 Sinv = γ4

Transformation of the wavefunction under space inversion:

†

Ψ0 = γ4Ψ = Ψ

Sinvγ5 Sinv = γ4γ5γ4 = −γ5
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Infinitesimal rotation

ω → δω << 1 ⇒

cos ω → 1, sin ω → δω. 

i

Srot = 1 + Σ

2 3 δω



x0



1 = x1 + x2δω





r0 = r + δr

⇒

x02 = x2 − x1δω







x03 = x3
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Ψ0(r0) =

Ψ0(r + δr)

∂ Ψ0

∂ Ψ0

∂ Ψ0

=

Ψ0(r) +

δx

δx

δx

∂ x

1 +

2 +

3

1

∂ x2

∂ x3

 ∂ Ψ0

∂ Ψ0



=

Ψ0(r) +

x

x

δ ω

∂ x

2 −

1

1

∂ x2



i



=

SrotΨ(r) = 1 + Σ

Ψ(r)

2 3 δω



i



∂

∂ 



Ψ0(r) =

1 + Σ

x

− x

δω Ψ(r)

2 3 δω −

2 ∂ x

1

1

∂ x2



 1









=

1 +

Σ

i δω Ψ(r) = 1 + i δω ˆ

J

Ψ(r)

2 3 + ˆ

L3

3





ˆ

∂

∂

1

L3 = i x2

− x

, 

ˆ

J

Σ

∂ x

1

3 =

3 + ˆ

L3. 

1

∂ x2

2
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Infinitesimal rotation – conclusions





Ψ0(r) = 1 + i δω ˆ

J3 Ψ(r)

ˆ

1

J3 = Σ

2 3 + ˆ

L3

The change in the  functional form  of Ψ induced by the infinitesimal rotation consists of two parts: the space-time independent one (associated with the operator Σ ) and the one corresponding to the rotation in three-dimensional 3

space (associated with ˆL ). The total angular momentum operator îs the 3

J3

generator of an infinitesimal rotation around the third axis. 
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Bilinear covariants: ΨΓΨ

Ψ0(x0) = SΨ(x), 

Ψ0(x0)† = Ψ(x)† S† = Ψ(x)†γ4S−1γ4 = Ψ(x)S−1γ4

0

Ψ0(x0)†γ4 = Ψ(x)S−1, Ψ (x0) = Ψ(x)S−1

S−1γµ S = aµνγν

1. 0

Ψ (x0)Ψ0(x0) = Ψ(x)S−1SΨ(x) = Ψ(x)Ψ(x), − scalar

2. 0

Ψ (x0)γµΨ0(x0) = Ψ(x)S−1γµ SΨ(x) = aµνΨ(x)γνΨ(x)

ΨγµΨ0 = aµν ΨγνΨ , − vector



3. 0



Ψγ5Ψ Lor tr

Ψ (x0)γ5Ψ0(x0) = Ψ(x)S−1γ5 SΨ(x) =



−Ψγ5Ψ rot

pseudoscalar
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Bilinear covariants – summary

Scalar

ΨΨ

Vector

ΨγµΨ

Antisymmetric tensor

ΨσµνΨ

Pseudovector

i Ψγ5γµΨ

Pseudoscalar

Ψγ5Ψ
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Large and small covariants





 





A

0

ΨL







ΨL† − ΨS† 

 

 = ΨL† AΨL + ΨS† B ΨS

− large







0

−B

ΨS

ΨΓΨ =



 







0

A

ΨL







ΨL† − ΨS† 

 

 = ΨL† AΨS − ΨS† BΨL − small







A†

0

ΨS

Large: I, γ , 

, 

4 iγ5γk σij

Small: γ , 

, , 

k iγ5γ4 γ5 σk4
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Clifford algebra

Generalized quaternions - William K. Clifford (1845-1879)

Questions: Can we generate more bilinear covariants of the form ΨΓΨ? 

1. γ , 

µ γ2

µ = 1

2. γµγν = −γνγµ = i σµν

3. γ

, 

µγν γλ = γ5γσ

µ 6= ν 6= λ 6= σ

γµγνγµ = −γν

4. γ5 = γ1γ2γ3γ4

Products of more than 4 matrices can be reduced to products of at most 4

p, q = 1, 2, 3, 4, 5 : 1 matrix I, 5 matrices γ , 

q

10 matrices σpq

− together 16 matrices Γ
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Γ2 = I ⇒ Γ = Γ−1

If Γ

and

A 6= ΓB

ΓA, ΓB 6= I then

1. Tr (ΓA ΓB) = −Tr (ΓB ΓA) = 0, 

2. Tr Γ2 

A

= 4, 

3. Tr (ΓA) = 0, 

Tr (Γ





A) = Tr Γ2

BΓA

= −Tr (ΓBΓAΓB) = −Tr Γ−1Γ

=

B

AΓB

−Tr (ΓA)

16

Let

X

Λ =

λAΓA

A=1

then

1

λA = Tr (ΛΓ

4

A) . 
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APPROXIMATIONS
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APPROXIMATE SOLVING EIGENVALUE PROBLEMS

It is customary to divide the most commonly used approximate methods of solving eigenvalue problems to two classes:

• Variational methods, 

• Perturbational methods. 

113

VARIATIONAL METHOD

114

The variational methods are most appropriate if we have a discrete

eigenvalue problem:

ˆ

H|ψki = Ek|ψki, k = 1, 2, . . . 

with

E1 ≤ E2 ≤ E3 ≤ · · · . 

The variational methods result from a very simple property of the

eigenvalue problem known as the variational principle. 
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The basic theorem:

For a |Φi which belongs to the space spanned by the eigenvectors of ˆ

H, 

hΦ| ˆ

H|Φi

K[Φ] ≡

≥ E

hΦ|Φi

1. 

The equality can be achieved only if

|Φi = |ψ1i. 

The functional K[Φ] is called the  Rayleigh quotient. 

Conclusion:

hΦ(q)| ˆ

H|Φ(q)i ≥ E

hΦ(q)|Φ(q)i

q

if |Φ(q)i is orthogonal to |ψii for i = 1, 2, . . . , q − 1. 

Applications of the variational principle result in modifying a trial function Φ so that the value of K[Φ] becomes as small as it is possible within the constraints imposed upon Φ. 
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Different trial functions ⇒ different variational models. 

A precondition for applicability of the variational method is that the eigenvalue problem we are dealing with is bounded from below. 

Fulfilled in the case of a Schrödinger equation

Not fulfilled in the case of the Dirac equation. 

117

In the case of the Dirac equation some preliminary steps are necessary

• Restriction of the space of the trial functions by imposing the boundary conditions which would force them to be orthogonal to the

negative-energy solutions. In such a space the Dirac eigenvalue

problem is limited from below. 

• Modification of the Dirac Hamiltonian so that it is bounded from below for all square-integrable trial functions and retains the interesting part of its spectrum unchanged. 

118

In order to accomplish this one can

• project the Hamiltonian onto the space of the positive-energy states, 

• transform it in such a way that the negative-energy continuum would

overlap with the positive-energy continuum, 

• transform the Hamiltonian so that the large and small components are decoupled. 
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SCHRÖDIGER EQUATION: ALGEBRAIC REPRESENTATION

Schrödinger Hamiltonian eigenvalue problem (“time-independent

Schrödinger equation”):

ˆ

Hψk = Ekψk

A basis set expansion of the trial function

K

X

Φ =

Cn φn, hφn|φmi = δmn, 

n=1

leads to the algebraic approximation to the Schrödinger equation. 

K

X (Hmn − Ekδmn) Ckn = 0, k = 1, 2, . . . , n

n=1

The K-dimensional space H spanned by

is referred to as the

K

{φn}K

n=1

 model space
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McDonald theorem

 Let the model space be spanned by  K  basis functions and let the Hamiltonian matrix eigenvalues be

E(K)

1

≤ E(K)

2

≤ · · · ≤ E(K); 

K

 as the dimension of the model space is increased by adding an additional basis function, eigenvalues  E(K+1)

p

 of the (K + 1)- dimensional problem

 satisfy the inequalities:

E(K)

p−1 ≤ E(K+1)

p

≤ E(K)

p

 and as the model space approaches completeness, the algebraic solutions approach the exact solutions of the Hamiltonian eigenvalue equation. 

Conclusion: each eigenvalue of the algebraic eigenvalue problem is an

upper bound to the corresponding eigenvalue of the Hamiltonian. 
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SPECTRUM OF ONE-ELECTRON DIRAC HAMILTONIAN

E

E D

L

POSITIVE−ENERGY CONTINUUM

0

mc2 IONIZATION THRESHOLD

DISCRETE BOUND−STATE ENERGIES, 

D

0

FORBIDDEN ENERGY GAP

IN THE CASE OF A FREE ELECTRON

mc2

2

−

mc2

−

S

NEGATIVE−ENERGY CONTINUUM
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ENERGY FUNCTIONAL





Rayleigh quotient:

hΦ| ˆ

H|Φi

caΦL

K[Φ]

=

, 

Φ =

hΦ|Φi





cbΦS

q

Dirac:

K[Φ]

2

D

= W+ +

W− + 2mc2T

Lévy-Leblond:

K[Φ]L = T + (W+ + W−)

1  hΦL|V |ΦLi

hΦS|V |ΦSi 

W±

=

±

∓ mc2, 

2

hΦL|ΦLi

hΦS|ΦSi

1 hΦL|σ · p|ΦSihΦS|σ · p|ΦLi

T

=

. 

2m

hΦL|ΦLihΦS|ΦSi
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KINETIC BALANCE

LL energy functional:

hΦL|V |ΦLi

K[Φ]L = T + hΦL|ΦLi

1 hΦL|σ · p|ΦSihΦS|σ · p|ΦLi

T =

. 

2m

hΦL|ΦLihΦS|ΦSi

Kinetic balance condition:

ΦS ∼ (σ · p)ΦL ⇒

1 hΦL|(σ · p)2|ΦLi

T = 2m

hΦL|ΦLi



variational LL and Schrödinger

Kinetic balance condition



⇒

eigenvalue problems are equivalent. 


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ALGEBRAIC REPRESENTATION: MODEL SPACE

Basis set expansion of the components of the trial function

KL

KS

X

X

ΦL =

CL

k φL, 

ΦS =

CS

k φS

k=1

k=1

leads to the algebraic approximation to the Dirac equation. 

The kinetic balance condition implies

H{ΦS} ⊇ (σ · p)H{ΦL}

where H{Φ} – space in which Φ is expanded. 

This condition is necessary for the correct behaviour of the variational procedure applied to the Dirac equation. 
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ALGEBRAIC REPRESENTATION

Dirac equation: variation of K[Φ] leads to an algebraic

(KL + KS) × (KL + KS) eigenvalue problem:



 



HLL − ESLL

c HLS

CL



 

 = 0, 

c HSL

HSS − ESSS

CS

Lévy-Leblond equation: K

matrix eigenvalue equation:

L × KL

(H − ESLL) CL = 0, 

1

H = HLL +

H

H

2m

LSS−1

SS

SL. 
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ALGEBRAIC REPRESENTATION: SPECTRUM

E

E D

E

E D

Σ +c

0

mc2

0

mc2

0

0

2

− mc2

− mc2

2

− mc2

− mc2

−

Σ c

EXACT SPECTRUM

ALGEBRAIC REPRESENTATION
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EXAMPLE: SPHERICAL SYMMETRY

Symmetry-adapted basis functions:

ϕL(r)

ϕS(r)

ΦL(r) =

AL(Ω), 

ΦS(r) =

AS(Ω)

r

r

A(Ω) – exact spin-angular functions

N

N

X

X

ϕL(r) =

CL

k rlk e−αk r , 

ϕS(r) =

CS

k rsk e−βk r

k=1

k=1
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STRUCTURE OF THE SADDLE POINT

Ground state of Z = 90 H-like atom, K = 1, Dirac (left), LL (right)

E = E(α

(up), 

(down)

1, β1)|

E = E(l

l

1, s1)|

1 =s1 =exact

α1=β1=exact
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BOUNDS TO EIGENVALUES: MINIMAX PRINCIPLE

A relativistic variational principle formulated as a recipe for reaching the saddle point on the energy hypersurface in the space of variational

parameters. 

" 

#

hΦ| ˆ

H|Φi

E = min

max

. 

{L}

{S}

hΦ|Φi
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TWO-ELECTRON DIRAC-COULOMB EQUATION

HDC(1, 2)Ψ(1, 2) = EDCΨ(1, 2)

Dirac-Coulomb Hamiltonian:

ˆ

1

HDC(1, 2) = ˆ

HD(1) + ˆ

HD(2) + r12

A hybrid composed of a relativistic one-electron part and a non relativistic two-electron term. Its eigenvalues corresponding to the bound-state

solutions are embedded in a continuum spreading from −∞ to +∞ and that the discrete and the continuum spectra are coupled by the electron-electron interaction. This effect is known as the Brown-Ravenhall disease and the continuum is referred to as the Brown-Ravenhall continuum. 
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SPECTRUM OF DIRAC-COULOMB HAMILTONIAN

Spectra of one-electron (A) and two-electron (B) Dirac Hamiltonian. 
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Two-electron discrete and continuous spectra overlap. 
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ARTIFACTS OF DIRAC-COULOMB EQUATION

• Electron-electron interaction couples discrete and continuum states. 

Consequently, all eigenvalues of the Dirac-Coulomb Hamiltonian

corresponding to physically bound states (including, for example, the

ground state of helium atom) are autoionizing. 

• Dirac-Coulomb Hamiltonian does not have normalizable

eigenfunctions. 

• Removing the ‘unphysical” continuum by a projection results in an

incomplete model space. 

• The Dirac-Coulomb Hamiltonian is unbounded from below. 
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IMPLEMENTATIONS

The Dirac-Coulomb equation is a basis for relativistic Hartree-Fock-type methods referred to as  Dirac-Fock  or  Dirac-Hartree-Fock methods. 

In these methods the trial functions are represented by antisymmetrized products of Dirac spinors. 

The influence of the artifacts is usually removed by appropriate selection of the model space corresponding to a projection of the Dirac-Coulomb

Hamiltonian to the positive energy space. 
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EXAMPLE: POTENTIAL ENERGY CURVES

Non-relativistic (left panel) and relativistic (right panel) potential energy curves for the excited state of I . States dissociating in two

2

5p5, 2P iodine

atoms are shown [L. Vissher  et al.  JCP 1995]
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EXAMPLE: X-RAY SPECTRA

[B. Galley  et al. , PRA 1999]
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COMPLEX SCALING

The method known as complex coordinate rotation (CCR) has been

developed to study the autoionizing states also referred to as  resonances. 

These are the states whose discrete energies are embedded in a continuum. 

Basic theorem:  Bound state energies of a Hamiltonian do not change under the complex rotation of coordinates, 

r → reiΘ, 

 whereas the continua move to the complex plane. 

From the formal point of view discrete eigenvalues of a many-electron

Dirac Coulomb Hamiltonian are resonances. Therefore the complex scaling method may also be applied to analyzing the Dirac-Coulomb spectrum. 
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EFFECT OF COMPLEX COORDINATE ROTATION

E=Re(z)
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Γ/2=−Im(z)

Standard (left) and CCR (right) spectrum of a one-electron Dirac

Hamiltonian. Solid lines represent the positive, Σ+, and the negative, 

, 

c

Σ−

c

continua. The points in the real axis represent bound-state energies. 
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SPECTRUM OF A TWO-ELECTRON DC HAMILTONIAN
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Γ/2=−Im(z)

The same as before but for a two-electron system. 
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ALGEBRAIC CCR SPECTRUM OF Z=90 He-LIKE ATOM

E [104a.u.] Σ++

0



0

c

E [a.u.]

Right panel: Enlargement of



Σ+

−2000



the bound-state region. 

g

−2

2s2 & 2p2

(a) No complex rotation: The

1s2

Σ+−

−4000



−2mc2

c

discrete and the continuum

−4



1s3s

energies are mixed together. 

Σ−

−6000



1s2s

g

(b) The rotated spectrum: The

−6



−8000



(a)

(b)

continuum eigenvalues are

−4mc2

−8

Σ−−



1s2

moved to the complex plane. 

c

−10000



−2  −1 

0 

1

2

0 1000

Γ/2 [104a.u.]

Γ/2 [a.u.]

Basis set: 1826 Dirac spinors

Dots – the computed eigenvalues; Lines – limits of continua
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PERTURBATIONAL METHODS

141

CLASSICAL METHODS

Perturbational methods are applicable if the Hamiltonian may be split onto the unperturbed part ˆ

H and a perturbation ˆ

0

H0:

ˆ

H = ˆ

H0 + ˆ

H0

so that solutions of the eigenvalue problem of ˆ

H are known. 

0

Solutions of the eigenvalue problem of ˆ

H may then be expanded into a

power series of the perturbation using the solutions of the unperturbed problem. 

• Non-relativistic:

– Brillouin-Wigner

– Rayleigh-Schrödinger

• Relativistic

– Direct perturbation method
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Brillouin-Wigner theory

Let

( ˆ

H0 + ˆ

H0)|Ψi = E|Ψi, 

ˆ

H0|Ψ0i = E0|Ψ0i. 

and

hΨ0|Ψ0i = 1, hΨ|Ψ0i = 1

(the intermediate normalization). 

Then

E = E0 + hΨ0| ˆ

H0|Ψi

and

1

|Ψi = |Ψ0i +

ˆ

P ˆ

H0|Ψi, 

E − ˆ

H0

where

ˆ

P = Î − |Ψ0ihΨ0|

projects onto the space orthogonal to |Ψ0i. 
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The last two equations may be iterated. 

The result:

ˆ

P

E = E0 + hΨ0| ˆ

H0|Ψ0i + hΨ0| ˆ

H0

ˆ

H0|Ψ0i + · · · . 

E − ˆ

H0

is known as the Brillouin-Wigner expansion. 

Note:

On both left- and right-hand-side of the perturbational expansion appears the exact energy E. 

Therefore neither E nor |Ψi is here expanded terms of powers of the

perturbation operator. 

The method, when restricted to a given order and applied to an N-electron problem, is not  size extensive, i.e. its N-behaviour is incorrect. 
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Rayleigh-Schrödinger theory

Let

( ˆ

H0 + ˆ

H0)|Ψi = E|Ψi, 

ˆ

H0|Ψ0i = E0|Ψ0i. 

and

hΨ0|Ψ0i = 1, hΨ|Ψ0i = 1

(the intermediate normalization). 

Then

E = E0 + hΨ0| ˆ

H0|Ψi

and

1

|Ψi = |Ψ0i +

ˆ

P ( ˆ

H0 − E + E0)|Ψi. 

E0 − ˆ

H0
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The energy expansion:

ˆ

P

E = E0 + hΨ0| ˆ

H0|Ψ0i + hΨ0| ˆ

H0

ˆ

H0|Ψ0i + · · · . 

E0 − ˆ

H0

The operator

ˆ

ˆ

P

R0 = E0 − ˆH0

is called the  reduced resolvent. 

In the basis of eigenvectors of ˆ

H it may be represented as

0

ˆ

X

|Ψ0

R

i ihΨ0

i |

0 =

, 

i

E(i)

6=1

0

− E01

where Ψ01 ≡ Ψ0 and E01 ≡ E0. 
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In the third term of the Rayleigh-Schrödinger expansion appears the

unperturbed energy E0, while in the corresponding term of the

Brillouin-Wigner expansion - the exact one, E. The higher terms of the Rayleigh-Schrödinger expansion are entirely different from the ones of the Brillouin-Wigner ones. Their classification may be conveniently performed by means of diagrammatic techniques (the Goldstone and the Hugenholtz

diagrams are the most commonly used). 

In the case of N electron system the Rayleigh-Schrödinger approach may be formulated in such a way that its N-dependence is correct in every order of approximation (the formulation is size-consistent). 

The size-consistent version of the Rayleigh-Schrödinger perturbation

method is referred to as the  many-body perturbation theory (MBPT). 
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Direct perturbation theory

The Dirac equation for a stationary state of an electron in an external potential V (the energy scale is shifted by by mc2, i.e. E − mc2 → E):



 



V − E, 

c(σ · ˆp)

ΨL



 

 = 0. 

c (σ · ˆp), V − E − 2mc2

ΨS

The unperturbed problem:



 



V − E, 

c(σ · ˆp)

ΨL



 

 = 0. 

c (σ · ˆp), −2mc2

ΨS





From here

(σ · ˆp)

(σ · p)2

ΨS =

ΨL

and

+ V ΨL = EΨL

2mc

2m
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Dirac equation:

h î

H0 − β+E + β−(V − E) ψ = 0, 









1 0

0 0

β+ = 

 , 

β− = 

 , 

0 0

0 1













ψL

ψL

0

ψ = 

 = 

 + 

 = ψ+ + ψ−

ψS

0

ψS

ˆ

H0 = c (α · ˆp) + β+V − 2β−mc2, 

four-component spinors ψ+ and ψ− are projections of ψ:

ψ+ = β+ψ, 

ψ− = β−ψ. 

( ˆ

H0 − β+E)ψ = 0 −

the unperturbed problem, 

ˆ

H0 = β−(V − E) −

the perturbation. 
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The direct perturbation method is appropriate for relativistic perturbational calculations. 

It is based on the partition of the Dirac equation which defines the

unperturbed problem in the same Hilbert space as the exact one. 

The perturbation parameter is equal to the square of the fine-structure constant α. Therefore the k-th order of the perturbation corresponds to a term proportional to α2k. 
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RELATIVISTIC TWO-COMPONENT

METHODS

151

THE ELIMINATION OF THE SMALL COMPONENTS

The simplest and the most commonly used approach to an approximate

describing relativistic effects is the method in which the small components of the wavefunctions are expressed by the large ones using the Dirac

equation and then eliminated. As a result a relativistic description based on a two-component wavefunction is obtained. By expanding the resulting

equation into a power series of (E − V )/mc2 one obtains the well known Pauli approximation. The resulting Hamiltonian is strongly singular and the relativistic terms can only be used as the first order perturbations. Works directed towards development of a two-component relativistic theory free of the deficiencies of the Pauli approach resulted in formulation of numerous quasirelativistic theories. 
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THE PAULI METHOD

The Dirac equation

V ψL + c (σ · ˆp)ψS = E ψL

c (σ · ˆp)ψL + (V − 2mc2)ψS = E ψS, 

Eliminating the small component gives

1 

E − V −1

ψS =

1 +

(σ · ˆp) ψL ≡ ˆ

XψL, 

2mc

2mc2

and

ˆ

HlcψL = E ψL. 



−1

ˆ

1

E − V

Hlc =

(σ · ˆp) 1 +

(σ · ˆp) + V

2m

2mc2
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QUASIRELATIVISTIC FORMULATION

In order to convert this formalism into a quasirelativistic one in which only two-component wavefunctions appear one has to renormalize ψL:

1 = hψ|ψi = hψL|ψLi + hψS|ψSi = hψL| Î + ˆ

X† ˆ

X|ψLi = hψqr|ψqri, 

where the quasirelativistic wavefunction and Hamiltonian are defined as ψqr = ÔψL, 

ˆ

Hqr = Ô ˆ

Hlc Ô−1. 

with

1

ˆ



 2

O = Î + ˆ

X† ˆ

X
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PAULI HAMILTONIAN

Expanding ˆ

Hlc and Ô in (E − V )/mc2 on obtains the Pauli Hamiltonian:

~2

ˆ

ˆ

p2

ˆ

p4

s · (∇V × ˆp)

HP =

+ V −

−

−

4V. 

2m

8m3c2

2m2c2

8m2c2

The first two terms give the Schrödinger Hamiltonian. The next terms: the effect of change of the electron mass with velocity, the spin-orbit

interaction, a correction due to  Zitterbewegung (the Darwin correction). All these terms are highly singular and the eigenvalue problem of ˆ

HP does not

have any square-integrable solutions. However this operator may be (and has been) used to estimate the relativistic corrections as the first-order perturbations. By properly restricting its domain one can also use this operator in some variational approaches. However one should remember

that for a Coulomb potential there exists an area around the nucleus in which the expansion is invalid, because (E − V )/mc2 > 1. On the other hand, in this very area the relativistic effects are the most important. 
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REGULAR APPROXIMATIONS: ZORA, FORA, etc

There exist many other ways of reducing the Dirac equation to a

two-component form. A special attention deserves a recent approach by van Lenthe. If we write



−1

ˆ

c2

E

Hlc = (σ · ˆp)

1 +

(σ · ˆp) + V, 

2mc2 − V

2mc2 − V

then ˆ

Hlc may be expanded in E/(2mc2 − V ). This expansion is justified

for Coulomb-type potentials also near the singularity. One gets

ˆ

c2

Hlc

= V + (σ · ˆp)

(σ · ˆp)

2mc2 − V



c2

 

E



− (σ · ˆp)

(σ · ˆp) + · · ·

2mc2 − V

2mc2 − V
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In a similar way one can expand the normalization operator Ô. In effect, in the lowest order of the expansion, one obtains the so called  zeroth-order regular approximated (ZORA) Hamiltonian:

ˆ

c2

Hzora = (σ · ˆp)

(σ · ˆp) + V. 

2mc2 − V

ZORA Hamiltonian is regular, bounded from below and can be used in

variational calculations without any special restrictions. 
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In the higher order one gets the Hamiltonian in the  first-order regular approximation (FORA):





ˆ

1

c2

Hfora = ˆ

Hzora −

(σ · ˆp)

(σ · ˆp), ˆ

Hzora

2

2mc2 − V

This Hamiltonian, similarly as the Pauli one, does not have

square-integrable eigenfunctions and in not limited from below. Therefore it cannot be used in variational calculations, unless the space of the trial function is properly constrained. 
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FOLDY-WOUTHUYSEN TRANSFORMATION

A large family of two-component relativistic equations may be obtained by using different modifications of unitary transformations which decouple the large and small components in the Dirac equation. The best known are the Foldy-Wouthuysen and Douglas-Kroll transformations. 

Foldy and Wouthuysen transformation: a systematic procedure for

decoupling the large and the small component parts of the Dirac equation to any fixed order in the fine structure constant. 
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Let us consider a unitary transformation

ˆ

Hfw = U ˆ

HD U †

with





ˆ



−1/2

I

ˆ

W †

U = Î + ˆ

W † ˆ

W





− ˆ

W

Î

This transformation brings the Dirac Hamiltonian to a block-diagonal form (I.E. decouples the large and the small components) if ˆ

W fulfills the

following condition:

ˆ

1 h

i

1

h

i

W =

(σ · ˆp) − ˆ

W (σ · ˆp) ˆ

W +

V, ˆ

W . 

2mc

2mc2

If this equation is solved iteratively then consecutive iterations give corrections of consecutive orders in α. One can also represent this equation algebraically in a model space and find matrix elements of ˆ

W . 
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The "large component" part of the transformed equation:

ˆ

Hfwψfw = Eψfw, 

where

ˆ

h

i

Hfw = ˆ

W † V ˆ

W − V + c (σ · ˆp) ˆ

W + ˆ

W †(σ · ˆp) − 2mc2

is bounded from below and its spectrum is the same as the positive-energy spectrum of ˆ

H . 

D

The expansion of ˆ

W into a power series of α in the lowest order leads to the

Pauli Hamiltonian. 
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DOUGLAS-KROLL TRANSFORMATION

In the case of a free particle (V = 0) the Foldy-Wouthuysen transformation may be expressed in a finite form:

−1

" 

s

#

ˆ

(σ · ˆp)

(σ · ˆp)2

W0 =

1 +

1 +

mc

(mc)2

If V 6= 0 then in the ˆ

W transformed Dirac Hamiltonian the term coupling

0

large and small components is proportional to h

i

V, ˆ

W . From here one can

design a decoupling procedure in which consecutive orders are proportional to powers of V . This procedure is known as the Douglas-Kroll

transformation. 
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ONE-ELECTRON PAULI HAMILTONIAN



e 

ˆ

π = ˆ

p − Â

c

~

s =

σ

2

ˆ

HP(1) = ˆ

HSch(1) + ˆ

hP(1)

Unperturbed Hamiltonian – non-relativistic (Schrödinger):

ˆ

ˆ

π2

HSch =

+ V, 

2m

Perturbation – Pauli corrections:

~2

ê 



ˆ

π4

s · (∇V × ˆ

π)

hP = −

s · ˆ

B −

−

−

∇(∇V ). 

mc

8m3c2

2m2c2

8m2c2

Two-electron Pauli-Breit Hamiltonian:

ˆ

HBP(1, 2) = ˆ

HSch(1, 2) + ˆ

hP(1) + ˆ

hP(2) + V B

12(1, 2)
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LIÉNARD-WIECHERT POTENTIALS

Potentials generated at r by a charge

and moving with

1

e located at r2

velocity v (Alfred-Marie Liénard 1898, Emil Wiechert 1900)

2

e 

(v

−1

V lw

2 · r12)

2 (r1)

=

1 +

r12

cr12

e 

(v



 v 2

=

1 −

2 · r12)

+ O

r12

cr12

c

and

v

e v

 v 2

Alw

2

2

2 (r1) =

V lw

+ O

c2 2 (r1) = r12 c2

c
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Assuming that in a two-electron system V and A are due to the nucleus  and the second electron we get the classical (non-quantum) interaction energy of two electrons:

e2 

v

(v



 v 4

V

1 · v2

1 · r12)(v2 · r12)

12 =

1 −

−

+ O

, 

r

2

12

2c2

2c2r12

c

According to the correspondence principle, we substitute:

v ⇒ c α. 

The resulting quaantum-mechanical interacion operator (Breit correction): e2 

(α

(α



V B

1 · α2)

1 · r12)(α2 · r12)

12 =

1 −

−

. 

r

2

12

2

2r12

The cosecutive term describe, respectively, the instantenous

(non-relativistic) interaction, correction due to two-electron magnetic interaction and correction due to retardation resulting from the finite velocity of propagation of the interaction. 
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A relativistic Hamiltonian in which the two-electron terms are

approximated by e2/r is known as the  Dirac-Coulomb Hamiltonian. 

12

If the magnetic and retardation corrections ( Breit interactions) are included, then the Hamiltonian is called the  Dirac-Breit Hamiltonian. 

Since the interaction potential is correct up to (v/c)2 terms, the formulation based on this Hamiltonian is only approximately Lorentz invariant. 

The elimination of the small components from the Dirac-Breit equation

leads to two-electron relativistic Breit-Pauli corrections:

• orbit-orbit interaction, 

• spin-spin interaction, 

• spin-other orbit interaction, 

• two-electron Darwin correction. 
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BREIT-PAULI HAMILTONIAN

ˆ

HBP(1, 2) =

ˆ

HSch(1, 2) + ˆ

hP(1) + ˆ

hP(2)

+

ˆ

hoo(1, 2) + ˆ

hd2(1, 2) + ˆ

hso(1, 2) + ˆ

hss(1, 2)

where

• ˆ

HSch(1, 2) is the two-electron Schrödinger Hamiltonian, 

ˆ

p4

sj · (∇Vj × ˆp

~2

• ˆhP(j) =

j

−

j ) −

4V

8m3c2

2m2c2

8m2c2

j , j = 1, 2

where Vj ≡ V (j), ˆpj ≡ ˆp(j), etc, are one-electron Pauli corrections, 

• The remaining two-electron terms – Breit-Pauli corrections
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BREIT-PAULI CORRECTIONS

• Orbit-orbit interaction:





ˆ

1

(ˆ

p

r

hoo(1, 2) = −

1 · ˆ

p2) + 12 · (r12 · ˆp1) ˆp2

2m2c2

r12

r312

• Two-electron Darwin correction:

ˆ

1

1

hd2(1, 2) =

(4

4m2c2

1 + 42) r12

• Two-electron spin-orbit coupling:





ˆ

1

[r

[r

hso(1, 2) =

12 × ˆ

p2] · s1 + 21 × ˆp1] · s2

m2c2

r312

r312

• Spin-spin interaction:





ˆ

1

(s

(s

8π

hss(1, 2) =

1 · s2) − 1 · r12)(s2 · r12) −

(s

m2c2

r3

1 · s2)δ(r12)

12

r512

3
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